Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tob Induc Dis ; 222024.
Artigo em Inglês | MEDLINE | ID: mdl-38560551

RESUMO

In this narrative review, we highlight the challenges of comparing emissions from different tobacco products under controlled laboratory settings (using smoking/vaping machines). We focus on tobacco products that generate inhalable smoke or aerosol, such as cigarettes, cigars, hookah, electronic cigarettes, and heated tobacco products. We discuss challenges associated with sample generation including variability of smoking/vaping machines, lack of standardized adaptors that connect smoking/vaping machines to different tobacco products, puffing protocols that are not representative of actual use, and sample generation session length (minutes or number of puffs) that depends on product characteristics. We also discuss the challenges of physically characterizing and trapping emissions from products with different aerosol characteristics. Challenges to analytical method development are also covered, highlighting matrix effects, order of magnitude differences in analyte levels, and the necessity of tailored quality control/quality assurance measures. The review highlights two approaches in selecting emissions to monitor across products, one focusing on toxicants that were detected and quantified with optimized methods for combustible cigarettes, and the other looking for product-specific toxicants using non-targeted analysis. The challenges of data reporting and statistical analysis that allow meaningful comparison across products are also discussed. We end the review by highlighting that even if the technical challenges are overcome, emission comparison may obscure the absolute exposure from novel products if we only focus on relative exposure compared to combustible products.

2.
Respir Res ; 25(1): 51, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254111

RESUMO

BACKGROUND: Electronic nicotine delivery systems (ENDS) or electronic cigarettes (e-cigarettes) aerosolize an e-liquid composed of propylene glycol (PG) and vegetable glycerin (VG) as humectants, flavoring chemicals, and nicotine. Nicotine naturally occurs in two isomers R- and S-nicotine, with tobacco-derived nicotine (TDN) composed of S-nicotine, and tobacco-free/synthetic nicotine (TFN) composed of a racemic mixture of R- and S-nicotine. Currently, there is limited knowledge of the potential differences in the toxicity of TFN versus TDN. We hypothesized that exposure of TFN and TDN salts to C57BL/6J mice would result in a differential response in lung inflammation and protease/ antiprotease imbalance. METHODS: Five-week-old male and female C57BL/6J mice were exposed to air, PG/VG, PG/VG with TFN salts (TFN), or PG/VG with TDN salts (TDN) by nose-only exposure. Lung inflammatory cell counts, cytokine/chemokine levels, and matrix metalloproteinase (MMP) protein abundance and activity levels were determined by flow cytometry, ELISA, immunoblotting, and gel zymography, respectively. RESULTS: Exposure to the humectants (PG/VG) alone increased cytokine levels- IL-6, KC, and MCP-1 in the BALF and KC levels in lung homogenate of exposed mice. While no change was observed in the cytokine levels in lung homogenate of TDN aerosol exposed mice, exposure to TFN aerosols resulted in an increase in KC levels in the lungs of these mice compared to air controls. Interestingly, exposure to TDN aerosols increased MMP-9 protein abundance in the lungs of female mice, while exposure to TFN aerosol showed no change. The metabolism of nicotine or the clearance of cotinine for TFN exposure may differ from that for TDN. CONCLUSION: Exposure to humectants, PG/VG alone, induces an inflammatory response in C57BL/6J mice. TFN and TDN salts show distinct changes in inflammatory responses and lung proteases on acute exposures. These data suggest variable toxicological profiles of the two forms of nicotine in vivo. Future work is thus warranted to delineate the harmful effects of synthetic/natural nicotine with humectants to determine the potential toxicological risks for users.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/toxicidade , Metaloproteinase 9 da Matriz , Higroscópicos , Sais , Citocinas , Glicerol , Pulmão , Aerossóis , Produtos do Tabaco
3.
Res Sq ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38077054

RESUMO

Electronic nicotine delivery systems (ENDS) or electronic cigarettes (e-cigarettes) have propylene glycol (PG) and vegetable glycerin (VG) as humectants, flavoring chemicals, and nicotine. Nicotine naturally occurs in two isomers R- and S-nicotine, with both tobacco-derived nicotine (TDN) composed of S-nicotine and synthetic nicotine (TFN) composed of a racemic mixture of R- and S-nicotine. Currently there is limited knowledge of the potential differences in the toxicity of TFN vs TDN. We hypothesized that exposure of TFN salts to C57BL/6J mice will result in a differential response in inflammation and lung protease and antiprotease imbalance compared to TDN salts exposed mice. We studied the toxicological impact of these isomers by exposing mice to air, PG/VG, PG/VG with TFN salts, or PG/VG with TDN salts by nose-only exposure and measured the cytokine levels in BALF and lung homogenate along with MMP protein abundance in the lungs of exposed mice. Exposure to the humectants, PG/VG, used in e-cigarettes alone was able to increase cytokine levels-IL-6, KC, and MCP-1 in BALF and KC levels in lung homogenate. Further, it showed differential responses on exposure to PG/VG with TDN salts and PG/VG with TFN salts since PG/VG with TDN salts did not alter the cytokine levels in lung homogenate while PG/VG with TFN salts resulted in an increase in KC levels. PG/VG with TDN salts increased the levels of MMP9 protein abundance in female exposed mice, while PG/VG with TFN salts did not alter MMP9 levels in female mice. The metabolism of nicotine or the clearance of cotinine from TFN may differ from the metabolism of nicotine or the clearance of cotinine from TDN. Thus exposure of humectants alone to induce an inflammatory response while PG/VG with TFN salts and PG/VG with TDN salts may differentially alter inflammatory responses and lung proteases in acute exposures. These data suggest the harmful effects of synthetic/natural nicotine and PG/VG and potential toxicological risk for users.

5.
Toxicol Rep ; 10: 431-435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090225

RESUMO

Macrophages treated with the flavoring chemicals found in flavored electronic cigarettes have been shown to induce an inflammatory response, however, limited data are available on the effect of aerosol exposure to these chemicals. We hypothesized that aerosol exposure to flavoring chemicals found in commercially available flavored e-liquids would result in an increase in pro-inflammatory cytokines in macrophages. Raw264.7 macrophage cell lines were exposed to a low and high dose of propylene glycol/vegetable glycerin (PG/VG) with almond flavoring benzaldehyde (280 µg/ml and 2.1 mg/ml), PG/VG with spicy/clove flavoring eugenol (3.5 mg/ml and 12 mg/ml), or PG/VG with apple flavoring hexyl acetate (500 µg/ml and 2.5 mg/ml). Exposure to PG/VG with 2.1 mg/ml benzaldehyde resulted in a significant increase in KC levels compared to air and PG/VG exposed cells. Exposure to PG/VG with both doses of hexyl acetate resulted in a significant increase in KC and IL-6 levels compared to air exposed cells. Exposure to PG/VG with both doses of eugenol resulted in a significant increase in KC and IL-6 levels compared to air and PG/VG exposed cells. These data indicate the ability of aerosol exposure to e-cigarette flavoring chemicals to significantly increase pro-inflammatory cytokine release in macrophages.

6.
Toxics ; 10(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36006150

RESUMO

Flavoring chemicals in electronic nicotine delivery systems have been shown to cause cellular inflammation; meanwhile, the effects of fruit and tobacco flavors on lung inflammation by nose-only exposures to mice are relatively unknown. We hypothesized that exposure to flavored e-cigarettes would cause lung inflammation in C57BL/6 J mice. The mice were exposed to air, propylene glycol/vegetable glycerin, and flavored e-liquids: Apple, Cherry, Strawberry, Wintergreen, and Smooth & Mild Tobacco, one hour per day for three days. Quantification of flavoring chemicals by proton nuclear magnetic resonance spectroscopy (1H NMR), differential cell counts by flow cytometry, pro-inflammatory cytokines/chemokines by ELISA, and matrix metalloproteinase levels by western blot were performed. Exposure to PG/VG increased neutrophil cell count in lung bronchoalveolar lavage fluid (BALF). KC and IL6 levels were increased by PG/VG exposure and female mice exposed to Cherry flavored e-cigarettes, in lung homogenate. Mice exposed to PG/VG, Apple, Cherry, and Wintergreen increased MMP2 levels. Our results revealed flavor- and sex-based e-cigarette effects in female mice exposed to cherry-flavored e-liquids and male mice exposed to tobacco-flavored e-liquids, namely, increased lung inflammation.

7.
Clin Toxicol (Phila) ; 59(11): 992-1001, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33720783

RESUMO

BACKGROUND: Bites by the European adder (Vipera berus) in the UK are uncommon but potentially life threatening, and can be associated with marked limb swelling and disability. Following an interruption in Zagreb Imunoloski zavod antivenom supply around 2012, the UK changed its national choice of antivenom for Vipera berus to ViperaTAb, an ovine Fab monospecific antivenom. In the absence of randomised controlled trials, we established an audit to review its use in clinical practice. METHODS: A prospective audit of ViperaTAb use was conducted from March 2016 until November 2020 by the UK National Poison Information Service (NPIS). Users of the NPIS online toxicology database, TOXBASE, considering the use of antivenom for V. berus envenoming were invited to discuss the case with the on-call clinical toxicology consultant. Information was collected prospectively on indications, administration, adverse reactions and outcome of patients administered ViperaTAb antivenom. RESULTS: One hundred and seventy patients were administered ViperaTAb antivenom over five years. One hundred and thirty-two were adults and 38 children (median age and range: 38, 2-87 years). Bites occurred across the UK, but most commonly in coastal regions of Wales and of South-West and East England. Median time to presentation was 2.1 (IQR 1.5-4.0) h and to antivenom administration from presentation was 2.0 (IQR 0.9-3.6) h. A minority of patients presented to hospital more than 12 h after being bitten (n = 19, 11.2%) or received antivenom more than 12 h after presenting to hospital (n = 17, 10.0%). Features of systemic envenoming were present in 64/170 (37.6%) patients, including 23 (13.5%) with anaphylaxis and 26 (15.3%) with hypotension (nine with both). Clinician assessment considered the initial antivenom to have been effective in 122/169 (72.2%) patients. Repeated dosing was common, occurring in 55/169 (32.5%), predominantly due to persisting or worsening local effects (46/51, 90.2%). There were three cases of probable early adverse reaction. No deaths occurred during the study. Complications of envenoming were rare but included four patients that underwent surgery, three patients each with acute kidney injury, mild coagulopathy, or thrombocytopenia (one severe). The median duration of hospital stay was 43.7 (IQR 22.5-66.5) h, longer for children than adults (52.5 vs 41.3 h). CONCLUSION: ViperaTAb antivenom appears to be effective and safe and should be administered as soon as possible for patients meeting clinical criteria. Patients require close observation following antivenom to detect adverse reactions and progression or recurrence of envenoming. Close collaboration with expert NPIS consultant advice can help optimise antivenom timing, ensure repeated dosing is given appropriately, and avoid unnecessary surgical intervention. All hospitals, particularly those located in areas of relatively high incidence, should stock sufficient antivenom available at short notice, 24 h a day.


Assuntos
Antivenenos/uso terapêutico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Víboras/antagonistas & inibidores , Viperidae , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antivenenos/efeitos adversos , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/efeitos adversos , Tempo de Internação , Masculino , Auditoria Médica , Pessoa de Meia-Idade , Admissão do Paciente , Centros de Controle de Intoxicações , Estudos Prospectivos , Índice de Gravidade de Doença , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/metabolismo , Fatores de Tempo , Resultado do Tratamento , Reino Unido , Venenos de Víboras/metabolismo , Viperidae/metabolismo , Adulto Jovem
8.
Front Physiol ; 11: 613948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329065

RESUMO

Electronic nicotine delivery systems/devices (ENDS) such as electronic cigarettes (e-cigarettes) have been made available globally, with the intent to reduce tobacco smoking. To make these products more appealing to young adults, many brands have added flavoring agents. However, these flavoring agents are shown to progressively result in lung toxicity when inhaled via e-cigarettes. While recent federal regulations have banned the sale of flavored e-cigarettes other than tobacco or menthol flavors, concerns have been raised about the health effects of even these flavors. In this review, we evaluate the current toxicological data with regard to effects upon exposure in animal models and in vitro cell culture for these popular flavorants. We have tabulated the current e-cigarette products containing these most common flavors (menthol, mint, and tobacco) in the market. We have also indicated the prevalence of tobacco and menthol-flavor use among e-cigarette users and highlighted the possible challenges and benefits that will result from new federal regulations.

9.
Toxicol Lett ; 333: 303-311, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783911

RESUMO

Current FDA regulations have resulted in a ban of flavored e-cigarette pods, with only menthol and tobacco flavored pods being exempted. Previous work using menthol and tobacco-flavored e-cigarettes have been shown to induce mitochondrial reactive oxygen species. We hypothesized that exposure to pod-based JUUL Menthol and Virginia Tobacco aerosols will alter mitochondrial respiration and electron transport chain protein levels. We determined mitochondrial respiration by using a Seahorse technique and electron transport chain complexes by total OXPHOS antibodies after exposing lung epithelial cells, Beas-2b, to pod-based Menthol and Virginia Tobacco flavored aerosols. Menthol pod exposure resulted in an immediate increase in proton leak and decrease in coupling efficiency, as well as a decrease in complex I, II, and IV. Menthol pod exposure twenty-four hour post-exposure resulted in a decrease in basal respiration, maximal respiration, and spare capacity, as well as a decrease in complex I. Tobacco pod exposure resulted in no significant alterations to mitochondrial respiration, but immediately post final exposure resulted in a significant increase in complex I, IV, and V. Our results indicate that exposure to Menthol flavored e-cigarette pods cause mitochondrial dysfunction in lung epithelial cells.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Aromatizantes/toxicidade , Pulmão/efeitos dos fármacos , Mentol/toxicidade , Mitocôndrias/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Aerossóis , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Pulmão/patologia , Mitocôndrias/patologia , Fumar/efeitos adversos
10.
Toxics ; 8(3)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605182

RESUMO

Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT), may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these e-cig vape cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of e-cig vape cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse plasma, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to e-cig vape cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined SARS-CoV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific e-cig vape cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated proinflammatory markers in the pathogenesis of EVALI.

11.
bioRxiv ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587960

RESUMO

Recently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT) may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products. We hypothesized that these e-cig cartridges and their constituents (VEA and MCT) induce pulmonary toxicity, mediated by oxidative damage and inflammatory responses, leading to acute lung injury. We studied the potential mechanisms of cartridge aerosol induced inflammatory response by evaluating the generation of reactive oxygen species by MCT, VEA, and cartridges, and their effects on the inflammatory state of pulmonary epithelium and immune cells both in vitro and in vivo. Cells exposed to these aerosols generated reactive oxygen species, caused cytotoxicity, induced epithelial barrier dysfunction, and elicited an inflammatory response. Using a murine model, the parameters of acute toxicity to aerosol inhalation were assessed. Infiltration of neutrophils and lymphocytes was accompanied by significant increases in IL-6, eotaxin, and G-CSF in the bronchoalveolar lavage fluid (BALF). In mouse plasma, eicosanoid inflammatory mediators, leukotrienes, were significantly increased. Plasma from e-cig users also showed increased levels of hydroxyeicosatetraenoic acid (HETEs) and various eicosanoids. Exposure to e-cig cartridge aerosols showed the most significant effects and toxicity compared to MCT and VEA. In addition, we determined at SARS-COV-2 related proteins and found no impact associated with aerosol exposures from these tested cartridges. Overall, this study demonstrates acute exposure to specific e-cig cartridges induces in vitro cytotoxicity, barrier dysfunction, and inflammation and in vivo mouse exposure induces acute inflammation with elevated pro-inflammatory markers in the pathogenesis of EVALI.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31963835

RESUMO

Electronic cigarette (e-cigarette) use has had an exponential increase in popularity since the product was released to the public. Currently, there is a lack of human studies that assess different biomarker levels. This pilot study attempts to link e-cigarette and other tobacco product usage with clinical respiratory symptoms and immunoglobulin response. Subjects completed surveys in order to collect self-reported data on tobacco product flavor preferences. Along with this, plasma samples were collected to test for immunoglobulin G (IgG) and E (IgE) levels. Our pilot study's cohort had a 47.9% flavor preference towards fruit flavors and a 63.1% preference to more sweet flavors. E-cigarette and traditional cigarette smokers were the two subject groups to report the most clinical symptoms. E-cigarette users also had a significant increase in plasma IgE levels compared to non-tobacco users 1, and dual users had a significant increase in plasma IgG compared to non-tobacco users 2, cigarette smokers, and waterpipe smokers. Our pilot study showed that users have a preference toward fruit and more sweet flavors and that e-cigarette and dual use resulted in an augmented systemic immune response.


Assuntos
Aromatizantes/química , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Fumantes/psicologia , Paladar , Comportamento do Consumidor , Projetos Piloto , Fumantes/classificação , Uso de Tabaco/psicologia , Vaping/psicologia , Fumar Cachimbo de Água/psicologia
13.
Sci Rep ; 9(1): 19035, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836726

RESUMO

E-cigarette flavored pods are increasing in use among young adults. Although marketed as a safer alternative to conventional cigarettes, the health effects of e-cigarette flavored pods are unknown. We hypothesized that e-cigarette flavored pods would cause oxidative stress, barrier dysfunction, and an inflammatory response in monocytes and lung epithelial cells. JUUL pod flavors (Fruit Medley, Virginia Tobacco, Cool Mint, Crème Brulee, Cool Cucumber, Mango, and Classic Menthol) and similar pod flavors (Just Mango-Strawberry Coconut and Caffé Latte) were tested. These pod flavors generated significant amounts of acellular ROS and induced significant mitochondrial superoxide production in bronchial epithelial cells (16-HBE). Lung epithelial cells (16-HBE, BEAS-2B) and monocytes (U937) exposed to various pod aerosols resulted in increased inflammatory mediators, such as IL-8 or PGE2. JUUL pod flavors, Crème Brulee and Cool Cucumber, caused epithelial barrier dysfunction in 16-HBE cells. Moreover, tested flavors also showed DNA damage upon exposure in monocytes. We determined the chemical constituents present in various flavors. Our data suggest that these constituents in flavored pods induce oxidative stress, inflammation, epithelial barrier dysfunction, and DNA damage in lung cells. These data provide insights into the regulation of e-cigarette flavored pods, as well as constituents in these flavors.


Assuntos
Dano ao DNA , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/patologia , Epitélio/fisiopatologia , Aromatizantes/efeitos adversos , Inflamação/patologia , Pulmão/patologia , Monócitos/patologia , Linhagem Celular , Dinoprostona/metabolismo , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Interleucina-8/metabolismo , Mitocôndrias/metabolismo , Monócitos/efeitos dos fármacos , Superóxidos/metabolismo
14.
PLoS One ; 14(12): e0226066, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31825984

RESUMO

Flavored tobacco products are increasing in popularity but remain unregulated, with the exception of the ban on flavored conventional cigarettes. Lack of regulation of cigarillos and little cigars allows vendors to have their own version of popular flavors, each with different chemical components. A new classification system was created for flavored cigars in order to easily communicate our results with the scientific community. To understand the physicochemical characteristics of flavored little cigars and cigarillo smoke, size distribution and concentration of particulate matter in smoke were determined. Acellular reactive oxygen species generation was measured as an indirect measurement of the potential to cause oxidative stress in cells. In addition, cigarillo smoke extract treatment on bronchial epithelial (Beas-2b) cells were assessed to determine the flavor-induced cellular toxicity. Flavored cigars/cigarillos showed significant variability in the tested parameters between flavors as well as brands of the same flavor, but most of the cigars showed higher potential of generating oxidative stress, than research grade cigarettes. Flavored cigars produced maximum particle concentrations at 1.0µm and 4.0 µm compared with 3R4F reference research cigarettes. A differential cytotoxic response was observed with cigarillo smoke extract treatments, with "fruits/candy" and "drinks" being the most toxic, but were not more cytotoxic than smoke from cigarettes. These cigarillos with flavors must be well characterized for toxicity in order to prevent adverse effects caused by exposure to flavor chemicals. Our study provides insight into understanding the potential health effects of flavor-infused cigars/cigarillos and the need for the regulation of those flavoring chemicals in these products. Future research is directed to determine the flavoring toxicity of little cigars and cigarillos in vivo studies.


Assuntos
Aromatizantes/química , Produtos do Tabaco/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Aromatizantes/classificação , Humanos , Material Particulado/análise , Espécies Reativas de Oxigênio/metabolismo , Fumaça/análise , Produtos do Tabaco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA